Université de Montréal

High-Performance Asteroid Field Rendering

by
Alexandre Marques Dias

Department of Computer Science
Faculty of Arts and Sciences

Master of Science (M.Sc.) Internship Report
presented to Dr. Pierre Poulin

April 2025

ABSTRACT

This report details my internship at Cosmographic Software LLC, where 1 worked as a graphics
programmer to implement a variety of GPU-based graphics optimisations for the software
SpaceEngine, a real-time space simulation software. These optimisations can affect many aspects
in the engine. They were implemented with the primary intent to render asteroid fields on screen.
The main project of this internship was to implement the rendering of millions of instantiated
asteroids in real time with little to no loss in visual fidelity. To accomplish that, I applied the
following computer graphics optimization techniques: GPU-based per instance frustum culling
with indirect draw, level of detail, and volumetric billboarding. The latter is based on a rotating
texture atlas depending on the asteroid’s position and rotation and the camera’s position, rotation,
and orientation. This resulted in the successful rendering of millions of asteroids at 60 frames per
second. The implemented techniques have all been programmed from scratch in Vulkan. They
are abstracted into the engine to be used for other scenarios in the future, such as rendering
debris on the surface of planets.

Keywords:
Graphics programming, GPU optimization, Vulkan, Real-time rendering, Compute
Shaders, Culling, Billboarding, Texture Atlas

RESUME

Ce rapport détaille mon stage chez Cosmographic Software LLC, ou j'ai travaillé comme
programmeur graphique pour mettre en ceuvre une variété d'optimisations graphiques basées sur
le GPU dans le logiciel SpaceEngine, un logiciel de simulation spatiale en temps réel. Ces
techniques d'optimisation peuvent affecter de nombreux aspects dans le moteur. Elles ont été
mises en ceuvre avec l'intention de faire le rendu de champs d'astéroides a l'écran. Le projet
principal de ce stage ¢était de mettre en ceuvre le rendu de millions d'astéroides instanciés en
temps réel avec peu ou pas de perte de fidélité visuelle. Pour y parvenir, j'ai appliqué les
techniques d'optimisation graphique suivantes : ¢limination d’instances hors pyramide basée sur
GPU avec indirect draw, niveaux de détails, et le billboarding volumétrique. Ce dernier se met a
jour sur un atlas de texture rotatif en fonction de la position et de la rotation de 1'astéroide et de la
position, de la rotation et de 'orientation de la caméra. Cela a permis de rendre avec succes des
millions d’astéroides a 60 images par seconde. Les techniques mises en ceuvre ont toutes été
programmeées a partir de zéro dans Vulkan. Elles sont abstraites dans le moteur pour étre utilisées
pour d'autres scénarios dans le futur, par exemple, le rendu des débris a la surface des planétes.

Mot Clés:
Infographie, optimisation GPU, Vulkan, rendu en temps réel, Compute Shaders,
élimination, Billboarding, atlas de textures.

CONTENTS

The structure of this report is organized into five chapters. Chapter 1 introduces Cosmographic
Software LLC, outlines its main project SpaceEngine, and describes the internship objectives and
context. Chapter 2 provides essential background information on various computer graphics
optimization techniques relevant to the internship, including frustum culling, GPU-based frustum
culling, level of detail (LOD) for meshes, billboarding, textures, and texture atlases. Chapter 3
presents the detailed modeling and implementation of my solutions, covering the GPU instancing
data structure, GPU-based frustum culling, the level-of-detail system, and the special
billboarding system that I built to simulate 3D rotation animations on a 2D billboard. Chapter 4
goes into the results, discussing performance, visuals and comparisons of related projects.
Finally, Chapter 5 concludes the report by summarizing achievements of the internship and
discussing possible future work.

CHAPTER 1

INTRODUCTION

Cosmographic Software LLC is a company specialized in the development of real-time
simulation and visualization of astronomy and astrophysics. At the time of this report, the
company is based in the United States in New Haven, Connecticut. It counts fifteen full-time
employees. Founded in 2022, Cosmographic Software is owned by Vladimir Romanyuk, a
Russian astronomer and computer graphics programmer, and managed by Alexander T. Long,
acting as Chief Operating Officer of the company. Although the company was founded recently,
Cosmographic’s main project, SpaceEngine, has been in development by Vladimir since before
2010.

The main project of the company is a real-time space simulation software called SpaceEngine
(Figure 1). It is a 3D astronomical visualization software that allows users to explore and
navigate through the universe in real time, with a focus on scientific accuracy and attention to
details. SpaceEngine allows users to explore real scenarios, such as the Solar System, or
hypothetical scenarios, such as procedurally generated star systems. It can also customize
celestial objects such as planets. It features hundreds of thousands of real celestial objects
registered in astronomical catalogs, such as from the Hipparcos catalog [1] and from the New
General Catalogue of Nebulae and Clusters of Stars [2]. Each of these real objects are placed
accurately where they exist in a universe, the size of over 32.6 billion light-years on each side,
centered on the barycenter of the Solar System. They are visually represented as scientifically
realistic as possible. Besides these real objects, SpaceEngine also makes use of realistic
procedural generation based on real scientific data to generate most of its universe, which results
in extremely accurate real-time simulation of space. Cosmographic employs three physicists with
various roles to ensure the scientific accuracy of the software.

Figure 1: SpaceEngine’s General Relativity Visualisation.

The SpaceEngine development team is composed of three graphics programmers and two
general programmers. Of the two graphics programmers, Vladimir, the owner of the company,
also acts as an authority for accurate space simulation because of his astrophysics background.
Peter Ohlmann, my internship supervisor, is a talented graphics programmer with over 30 years
of development experience in the video game industry while being an expert in Vulkan graphics.

The internship lasted ten months, from March to December 2024. My project was to efficiently
render millions of asteroids on screen by combining multiple computer graphics techniques, and
to develop the Vulkan infrastructure needed for the task and potential future ones. The main tools
of the project were C++ for general programming, GLSL for shader programming, Vulkan for
the graphics API, RenderDoc and Imgui for debugging.

CHAPTER 2

BACKGROUND

In this section, we discuss several common techniques that are used to optimize rendering
performance and that were used during this internship. We start with frustum culling, a classic
technique to discards objects outside the camera’s view pyramid in order to reduce unnecessary
drawing. Next, we discuss GPU-based frustum culling, a modern alternative where the culling
work is offloaded to the GPU to better leverage parallel processing. Afterwards, we discuss mesh
level of detail (LOD) of meshes, a method to dynamically adjust the number of vertices count
based on camera distance to save on computational costs. We then go over billboards, an
optimization technique about displaying objects as textures on a 2D rectangle. Finally, we look at
textures, a fundamental concept in computer graphics, and then at texture atlases, which combine
multiple textures into a single one to reduce the overhead of texture binding and draw calls.

2.1 Frustum Culling

Frustum Culling is a common object culling technique used in computer graphics to improve
rendering performance. The main objective of frustum culling is to avoid rendering or
instantiating objects that are outside of the view pyramid. The majority of frustum culling
techniques are implemented on the CPU to avoid sending useless processing to the GPU before a
3D scene is loaded into it. This is done first by constructing the camera’s view frustum, which is
a portion of a solid like a cone or truncated pyramid that represents the volume of vision of a
camera. It is made of six planes named from the camera’s point of view : left, right, top, bottom
with a near plane and a far plane to limit rendering distance.

bottom

Figure 2: View Frustum.

The most common way to check if an object is inside or outside the view frustum is to test its
bounding volume against each of the frustum’s infinite planes. It can be done, for example, by
taking the dot product of the plane’s normal with the center of the bounding volume of the
object, which will return us the distance the object is along the normal. We can use this result to
determine which side of the plane the object lies on. If the normals of the planes point inward,
and the result of a dot product between one of the planes is smaller than the negative distance to
the center of the bounding volume, then it would mean the object is outside of the view frustum
and it can be culled. It is also common to test all eight vertices of the bounding volume to
provide more precise results at the cost of efficiency.

2.2 GPU-based Frustum Culling

An alternative and more modern technique for implementing frustum culling is called
GPU-based Frustum Culling, also called Compute Shader Culling or GPU Instance Culling. It is
a technique that forwards culling computations to the GPU rather than on the CPU, using
compute shaders and indirect rendering. The main advantage of doing it this way is to benefit
from the huge parallelism potential of compute shaders which can process many objects at once
without sending data back and forth between CPU and GPU. This is done by having a list of
object data stored on the GPU buffer, and a compute shader to cull them before the vertex
shading phase. The compute shader algorithm to check if an object is within the limits of a
frustum pyramid is similar to any typical implementation, the difference is that, instead of
iterating over each object one at a time on the CPU, the GPU processes all objects in parallel.
This can be done with bounding volumes or using only the object’s center position, provided that
they are spherical enough. Then, this is where indirect rendering comes in. Instead of sending
individual draw calls from the CPU, the GPU handles it. The compute shader writes draw
commands into a buffer (usually a DrawIndirect or DrawIndexedIndirect buffer). Each command

10

contains all the information needed to render a mesh: the number of vertices, indices, the
instance count, and offsets into the mesh and material buffers. The graphics pipeline then
consumes this buffer directly with a single DrawIndirect or DrawIndexedIndirect call.

2.3 Level Of Detail (LOD) of meshes

Level Of Detail of meshes, often abbreviated LOD, is a technique used to optimize rendering
performance by adjusting the complexity of a mesh based on its distance from the camera. The
basic principle is that objects further away from the camera do not need as many details because
they appear smaller on screen, so lower-resolution versions of those meshes can be used to
reduce the amount of computations needed.

Polygons approx.
60.000 6.000 600 B0

- DISTANCE TO CAMERA -

very close very far away

Figure 3: Level Of Detail.

A typical LOD system involves creating several versions of the same model, each with a
different polygon count. High-resolution meshes are displayed when the object is close to the
camera, while lower-resolution meshes are substituted in as the object moves further away. The
transition between LODs is usually based on distance thresholds, although more advanced
systems might factor in screen-space size or other metrics. If transition between LOD models is
too apparent on screen, Hughes Hoppe’s progressive meshes [3] provides a solution with its
encoding of a continuous LOD representation with smooth, seemingly continuous transitions, at
the cost of performance.

11

2.4 Billboards

Billboards are a rendering technique to display 2D quadrilaterals that are used to represent
objects in a 3D scene, usually for objects like trees, particles, or distant objects. Instead of
rendering complex 3D geometry, a billboard is a flat, two-dimensional rectangle with a texture
mapped onto it, often with transparency. Billboards are usually implemented in a way such that
their orientation always remains perpendicular to the viewer to display their texture, maintaining
the illusion of volume despite being flat. Because they only require four vertices, billboards are
computationally very efficient to render.

B2

)\Bg

1- _Ir_--.-.-rl-' vi EWil’lE
Direction

Camera

Y=

Figure 4: Billboards.

2.5 Textures

Textures are 2D images applied to the surfaces of 3D models to add color. They are typically
mapped onto the surface of an object using UV coordinates. That tells the shader how to wrap
the 2D image around the 3D shape. There are different types of textures, with different purposes,
to name a few: diffuse or albedo textures define base colors, normal maps simulate surface
bumps by perturbing normal vectors on the 3D model, and specular or roughness maps define
how shiny or matte a surface appears. Textures are stored in GPU memory and sampled during
rendering, very often in the fragment shader, to determine the final appearance of each pixel on
the screen.

12

2.6 Texture Atlas

A texture atlas is a single large texture that contains a collection of smaller textures, often
referred to as sub-textures or sprites. Instead of binding and switching between multiple textures
during rendering, a texture atlas allows objects to sample from different regions of the same
texture. This is often used to reduce the number of texture binds and draw calls, which improves
rendering performance. Each sub-texture within an atlas is mapped to specific UV coordinates in
a shader (often the fragment shader), which knows which part of the atlas to sample from for a
given object and a given view direction. Texture atlases are commonly used for concepts like UL
elements, animated 2D billboards, or different material variations on objects.

13

CHAPTER 33

MODELLING

In this chapter, we will go through the detailed modeling of the solutions implemented to
successfully render millions of asteroids in real time. The chapter has eight sections, detailing the
most important steps for this project. We start with an introduction describing the problem we
need to solve and some context surrounding it. Then for the first three sections we detail how we
implemented our frustum culling solution. First, we see how the compute shader was set up in
the engine, then in a second section we see how we organised the asteroids’ data on the GPU and
finally, on a third section we look at the main frustum culling algorithm inside our compute
shader to conclude the GPU-based frustum culling technique. Afterwards, we have a section on
our LOD template structure and we explain how we define our distance function for choosing the
correct LOD for a given asteroid. Then in the following section, we jump into billboards that
represent asteroids at the lowest level of detail. Then in the next section we explain how we
implemented our texture atlas and finally for the section, we explain how we animated our
billboards using the texture atlas.

3.1 Introduction

The main problem we were trying to solve in this project is the ability to render millions of
realistic asteroids on screen within at least 60 frames per second on mid-range computer
hardware. Before my internship, there had been a previous attempt by another graphics
programmer at solving this problem with the use of ray marching. The idea was to procedurally
generate organic shapes with the use of signed distance functions (SDF) in screen space, entirely
in a fragment shader. However, this process required too many computations per pixel, and could
not reliably generate millions of asteroids on screen without a heavy loss of performance.
Additionally, because the asteroids were all generated in the fragment shader phase of the
graphics pipeline, they could not be distinguished as individual objects in our engine. This meant
the asteroids could not interact with the player using various features present in our engine, such
as clicking on an astronomical object to open an information window about it. Although the ray
marching solution was mathematically complex, its advantage was that it was structurally
simple, the majority of its code being contained in a single fragment shader. But in the end, this
solution was simply not efficient enough, so we needed something else. We took inspiration from

14

one of Shasha Willems’s Vulkan projects. For context, Shasha Willems is a Khronos Group
developer and advisory panel member. He is known for being one of the most respected Vulkan
experts. He provided multiple tutorials and example projects implementing a variety of real-time
computer graphic techniques using the Vulkan API. One of which was using computer shaders to
implement GPU-based frustum culling to render tens of thousands of Suzanne objects with the
help of distance-based levels of detail (see Figure 5). This was a good start for our project.
However, we needed to render millions of asteroids with more polygons than a Suzanne model,
more variety (multiple different asteroids), and within an engine that takes up additional
processes (user interface, player controls, post processing, etc.). So additional rendering
optimization techniques were needed, such as our billboarding system which we will discuss in
detail later in this chapter.

[
“ W Vulkan Example

p: Vulkan Example - Compute cull and lod
4.93 /frame (203 fps)

Figure 5: Sasha’s Vulkan example with multiple instances of the Suzanne geometric model.

3.2 Compute Shader Structure

Before this internship, our project did not support any compute shader, and so, all the structures
and pipelines in our Vulkan engine had to be built from scratch. Once that was done, our very
first compute shader was written to optimize our asteroid fields by doing view frustum culling on
the GPU. To make it as optimal as possible, the compute shader executes prior to the vertex and
fragment shaders in the graphics pipeline, optimizing the rendering process by culling
unnecessary geometry before any kind of rasterization occurs. This significantly reduces the

15

workload for subsequent shader stages by discarding asteroids not visible within the camera's
view. It is made especially efficient because we are executing the culling code for each asteroid
in parallel on the GPU. Indeed, we defined the compute shader in a way so that it dispatches one
compute invocation per asteroid instance.

Global Y

Globa|
X Global Z

Figure 6: A work group split by its local size (typically by 16).

Compute shader dispatches are always defined in three dimensions, x,), z, each with their own
number of local workgroups (Figure 6). For our culling implementation, we only need to use one
dimension, therefore we define our dispatch like so:

CommandBuffer. Dispatch(instance_count/ 16, 1, 1);

The number of dispatched groups is calculated based on the total number of instances divided by
the workgroup size to ensure complete coverage of all asteroid instances.

The invocation is organized into workgroups, each containing 16 threads as specified in the
compute shader by the local workgroup size (local size x = 16). Therefore, the total number of
workgroups dispatched is computed as instance count / 16 to ensure all asteroid instances are
processed. This division allows efficient GPU utilization, balancing workload evenly across
multiple shader cores.

To dispatch and organize the compute shader within the engine, eight buffers and descriptors are
initialized.

We have one uniform buffer to contain the camera's position, the origin of the asteroid field, and
the frustum planes for culling computations. This buffer needs to be of uniform storage qualifier
because its variables need to be updated each frame. Indeed, both the camera and the frustum

16

planes need to move as the player flies around, and we need the asteroid field to be able to be
displaceable too.

We have three read-only storage buffers that are loaded at the start of the scene: a buffer for the
asteroid’s positions that stores the world-space positions of each asteroid instance, another for
their template type that stores identifiers for the type of asteroid template assigned to each
instance (as we will see later, we have multiple different shapes of asteroids), and finally a buffer
for their vertex index ranges that stores precomputed index ranges used to render different
asteroid templates and LODs efficiently.

We have two write-only indirect draw buffers that hold indirect draw commands, which we will
discuss in the next section.

Finally, we have an atomic counter buffer to track the number of visible instances, facilitating
dynamic indexing into yet another write-only buffer that records visible instances.

33 Draw Indirect Data Structure

For our project, we made use of indirect draws to render our asteroids. An indirect draw
command allows the GPU to execute rendering calls directly based on data stored within the
GPU memory, without additional CPU overhead per draw call. This method reduces CPU-GPU
synchronization, which significantly improves rendering efficiency, especially when rendering a
large number of objects like in our case. We use Vulkan’s vkCmdDrawlndexedIndirect to render
our large number of instances directly on the GPU. For this, we had to prepare an indirect draw
buffer containing draw parameters. In our compute shader, we have two indirect draw write-only
buffers with the following structure of parameters: index count, instance count, first index, vertex
offset, and first instance. The index count defines how many indices to read for rendering an
object's geometry from the index buffer, and the instance count specifies how many instances of
that geometry should be drawn. Setting that last parameter to zero skips rendering the geometry,
which is important for our culling algorithm. The first index is the starting point within the index
buffer from which indices are read. The vertex offset is added to each vertex index to efficiently
reuse geometry data, and the first instance identifies the starting instance ID used by shaders to
differentiate multiple instances during rendering.

17

3.4 Frustum Culling Algorithm

Here is a simplified version of our asteroid frustum culling algorithm in our compute shader. As
mentioned previously, this algorithm runs in parallel for every asteroid instance.

Algorithm 1 Asteroid Instance Visibility

world_position < instance_position + asteroid_field_origin
1s_visible + true

for each frustum_plane do
if dot(world_position, frustum_plane) + radius < 0 then
is_visible < false
break

end if
end for

if 72s_visible then
index < atomicAdd(atomic_counter, 1)
visible_indices|index] < instance

distance_to_camera < length(world_position — camera_position)
lod_level < clamp(distance_to_camera x 0.05, 0, maz_LOD)

if lod_level > billboard_threshold then
indirect_billboard_buf fer|instance|.instanceCount + 1
indirect_asteroid_buf fer|instance].instanceCount < 0

else
indirect_billboard_buf fer|instance].instanceCount + 0
indirect_asteroid_bu f fer|instancel.instanceCount + 1

end if

else
indirect_billboard_bu f fer|instance].instanceCount < 0

indirect_asteroid_buf fer|instance].instanceCount < 0
end if

We can separate the algorithm in three steps:

First, each asteroid instance position, stored in the position buffer, is transformed into world
space by adding the asteroid field origin defined in our uniform buffer. The transformed positions
are then individually checked against the view frustum using a function that iterates through the
six frustum planes provided by our uniform buffer. For each asteroid instance, a dot product
calculation checks its spatial relationship to each plane. After the result, we then add the radius

18

of our roughly-spherical asteroid. If an instance is behind one frustum plane (indicating it is
outside the camera's view), its instance count in their indirect draw buffer is set to zero to cull it
from being drawn.

Then, an atomic counter buffer tracks the number of visible asteroid instances. Each time an
asteroid passes the frustum checks, it increments the atomic count. An atomic counter is a special
type of variable that allows safe incrementing or decrementing from multiple threads
simultaneously on the GPU. It ensures that each thread sees a unique, consistent value without
conflicts or race conditions. This counter’s output is used to index into a visible index buffer,
effectively compiling a compact list of indices corresponding exclusively to visible asteroid
instances that is updated at each frame.

Finally, asteroids determined to be within the frustum have their mesh data assigned to their
indirect draw buffer with an appropriate level of detail (LOD) based on their distance from the
camera. The farthest ones are rendered as billboards, which we will see in more details in the
next section.

3.5 Asteroid Templates and LOD Structure

We have five different template types for our asteroids, each with different shapes and sizes to
give our asteroids more variety. Each of these templates are further subdivided into five different
LOD:s, for a total of 25 different meshes. At the time of working on this project, the LODs and
templates only varied in geometry, their textures and materials remained unchanged, although it
would be a simple modification. We store all 25 meshes in a read-only buffer that organises these
templates sequentially by indexing each template with their following LODs. For each mesh, we
store its first index and index count so we can, for a given instance inside the frustum for the
field of view, write them into the indirect draw buffer for rendering. The handling of vertex
indices for each instance is done in the compute shader. It is not shown in Algorithm 1 to not
distract the reader from the essentials of the algorithm. The initial storage process is done before
the asteroid scene loads and does not need to be redone again. An asteroid template is assigned to
each instance randomly, while the LODs are defined by distance with a clamping function as
seen in Algorithm 1. The shorter the distance, the lower the LOD number. An LOD level of zero
indicates the highest level of detail possible, while a larger LOD value calls for lower details.
Going from zero to four, we have a total of five different LOD meshes for each template.
However, we defined our max LOD count to be five, so our clamping function can return a
larger LOD number than we have meshes for. This is because we reserve the very last LOD level
for our billboards, which are stored in a different draw indirect buffer. Our billboards are our
simplest meshes, with the lowest level of detail because they consist of only four vertices and a
low-resolution texture. With GPU-based frustum culling and our LOD system with billboards,

19

our engine is already capable of running scenes of more than one million asteroids at 60 FPS
(frames per second) on a mid-range graphics card. Below in Figure 7 is a screenshot of the LOD
system at work, with the billboards having bright placeholder texture in debug mode so we can
differentiate them more easily.

64ps [Forward MSAA] DCalls 11 Verts:78k Prims:52k Inst:1

Figure 7: Screenshot of the LOD system at work.

3.6 Orientating Billboards

At our lowest level of detail, we have billboards. Their geometry is implemented with a simple
rectangle defined by four vertices forming a 2D square. For billboards to work properly, their
plane of support needs to always be oriented towards the camera. We accomplish this by defining
a special transformation in their vertex shader. For most applications, billboards have two ways
of orienting themselves towards the camera, either by doing cylindrical. Or spherical
billboarding [4]. Cylindrical billboards rotate only around a single axis, typically the Y-axis. This
is especially useful for an object like a tree, where we want it to face the camera as we move
horizontally around the object, but to remain upright when viewed from above or below. Indeed,
allowing full rotation would make the object appear to tilt or uproot unnaturally, breaking the
illusion that they are anchored to the ground. In our case, where we simulate asteroids in space,
spherical billboarding is the better alignment. Spherical billboards rotate to face the camera from
all view directions. We need this because asteroids in the void are not rooted to any direction and
can be seen from any direction.

20

https://youtu.be/jZV49ZjUfjs

To orient a billboard such that it always faces the camera in the vertex shader, we use vectors
pre-calculated by our view matrix and we apply the following calculations.

Let:
e P, 44 be the billboard’s center position in world space.
° world De the camera’s vector pointing to its right in world space.

o U,.q be thecamera’s vector pointing above (up) itself in world space.

For each x and y coordinates in local space of a vertex belonging to the billboard rectangle, we

compute our vertex to world space Vo4 :

Vworld =P world + Xlocal Rworld + Viocal Uworld

Finally, we transform our world space vertex to clip space, Vclip , by multiplying it with our

model-view-projection matrix (Myyp):
Vclip = MMVP ' Vworld

The above method works because the camera’s right and up vectors, extracted from the camera’s
orientation in world space, define the plane perpendicular to the camera’s viewing direction. By
offsetting each billboard vertex along these vectors, the quadrilateral is constructed to always lie
parallel to the camera’s image plane, regardless of the camera’s position and orientation. This is
illustrated in Figure 8.

21

AA] DCall5:11Verts:78k Prims:52K Inst'11

Figure 8: Screenshot of billboards with placeholder textures aligning themselves to the camera.

Next, in the fragment shader we can apply the albedo and normal map textures. These are
obtained by pre-rendering the “front view” of each asteroid template before the scene loads. We
can then apply normal Phong shading to our billboard. The normal map will approximate what
the asteroid would look like if it were lit in 3D. Our asteroids can seemingly transition from 2D
to 3D, but obviously only if our camera does not change its orientation and if our asteroids
remain still. Both of which are not true, because our camera can move and look in any direction,
and the asteroids all rotate arbitrarily in space. So in our scenario, the billboards will
immediately lose their synchronisation to our 3D asteroids. To solve this problem, we need to
think about building a texture atlas with every asteroid orientation, depending on our camera’s
position and orientation relative to our billboards, and also depending on our asteroid’s current
transformation.

3.7 Billboard Texture Atlas

For our billboards to accurately simulate our 3D asteroids from far away, we need them to update
their texture as the asteroid rotates or as the camera changes orientation. In many billboard
applications in real-time engines, texture atlases are used to animate different angles of a 3D
object onto a billboard. A common case is for foliage. A series of textures are kept in an atlas,
where each texture is rendered from a different angle of the foliage all around their vertical axis.
For that last example, the atlas would only need to extend to one dimension, because we only
have to capture the foliage’s yaw axis (y-axis). For our case, we need more than only the yaw

22

https://youtu.be/b7ShFdhFhN8

axis. Before the scene loads, we rotate each asteroid shape at various angles in front of a camera
that renders them into a texture. We then place each texture in a 2D texture atlas.

More precisely, we divide our billboard texture atlas into a grid, defining its resolution by Rx
columns horizontally (pitch/x rotations) and Ry rows vertically (yaw/y rotations). For each cell of

the grid located at coordinates (7, j) we calculate pitch and yaw angles that evenly sample the
asteroid's rotation space:

. 21 1 : 2m-j

H = =L 0 = =L
pitch() R yaw(]) Ry
This gives us evenly spaced rotations from 0 to 2x for each texture atlas tile. We then input these
sampled orientations into a combination of rotation matrices to have a complete atlas of all pitch
and yaw rotations of our asteroids, like the images (see Figure 9) shown for an atlas of 32 by 32

textures.

eeee
POPLOILELECLEE CLOOVOPPP OOV IIIISIOOEP

2200860 ¢ L LLOLLIPPIIVIIVIGIIOIOPPOOPE Pitch ex
N

POOPOPRPREEIULLLLOLDLIOPOPPDIVIVIVIIOIPIIIOPW
A4 22 2 F XXX XT3 222 PO OPIPOIPOPVP 4
Vewweowwwe L2 2 2 2 L 2 4 & & &

cesssoanes PETIITILeSe®S Yyaw | 000 o — —

veesesoveewee Peeescdcassseey

LA A A B A A 2 2 2 4 FVeVsWEGEEsEsSSsSSwee
(L XXX XX L2 L 3 2 LA A A A A L 0 R h R
LA A A A A A AR AR AR __» -—

LA A A & A A A A A A A A4 #

vewweee oo e

CLE60000HQIIOGOOOOY
AR A X T T XXX E L L L 3 3

XX L2 2%
ceoeevw +
I€CLCEEESOOES
PEOCCLCECEEESODOS
POCOCCEEOOOOY LA A 2 2 2 2 X 2 X & & 2
TE AT R XX X X X2

POV LEOTIOOBDOOEEES @
CeEePIVOIDBOCOCOCOBSS

LA A A A A AR AR R R R AR R
LOLOGOOVPIIIIIIGIOIOOPPRES \,

Figure 9: On the left, an asteroid's pitch and yaw texture atlas visualized in its normal map.
On the right, a representation of its orientation with an arrow to help visualization.

However, we quickly fall into a major problem. We have pitch and yaw rotations, but we are
missing roll. A 3D asteroid can rotate in all three axes of rotation, and the space engine camera
can look at an object from any angle, Therefore, we would inevitably miss many possible
asteroid orientations in our texture atlas. Suppose our camera faces an asteroid rotating purely on
its yaw angle. If we do not move our camera, we would be able to accurately animate our
asteroid by cycling through the first row of our pitch/yaw texture atlas. However, as soon as we
move around the asteroid to observe it from a different angle, immediately we will face missing
rotations, because from our point of view, the asteroid will now be doing a roll rotation that is
absent from our atlas (see Figure 10).

23

D @

>
| move Missing roll!
<ToameYa
+B -F-..c(_ \I\ camMe ro
the arrow @ >
¥ =

\/

CarMero,

Figure 10: An arrow doing a pitch rotation from one view angle, and a roll from another angle.

The naive solution to this problem would be to build a 3D texture atlas that includes all rotation
angles. But, because our texture atlas is 32 by 32 textures, increasing its dimension would make
it 32 times larger! Considering we have five different asteroid shapes to load into our GPU, five
3D texture atlases of 32 by 32 by 32 textures (163,840 in total) would be an unacceptable
demand in memory size.

The actual solution to this problem is, in fact, simple. We keep our 2D pitch and yaw texture
atlas. However, when a roll is being performed, either by the camera or by the asteroid, we
simply roll the billboard itself directly in its vertex shader to simulate it. Although the idea is
simple, we are only halfway done. We still need to find the mathematical function (discussed in
the next section) to map a 3D asteroid rotation to a 2D atlas, with a proper billboard roll.

In the end, for the billboard fragment shader, where we apply its textures, we load a texture atlas
of five texture atlases for each asteroid shape, which in turn has 32 by 32 textures. In total, this
corresponds to one large texture atlas of 160 by 32 textures (tiles) (see Figure 11). The tile
selection is done in the billboard’s vertex shader where we calculate its (i, j) index given as input
to the fragment shader.

Figure 11: Texture atlas of texture atlases of asteroid rotations for five shape templates.

24

3.8 Animating Billboards
Every asteroid instance is given a random rotation axis in a 3D vector:
V:(rxa rya rz) | rxarya r, = [Os 1]

The vector is normalized and converted into a quaternion. To represent rotations using
quaternions, we convert from the axis-angle representation to a quaternion form. Given an
arbitrary vector v, we interpret its direction as the rotation axis and its magnitude ||v|| as the
rotation angle 0.

We thus define:

v
vl

A quaternion g representing a rotation of angle 0 about a unit axis u is defined:

6 =l u=

— S sin2
q = (cos—, usin—)
The half angle a 1s defined as:
_ vl
“T 2

We can calculate each dimension of a quaternion by combining the previous equations:

sin(a) _ sin(a) B sin(a)

=v - =v - =v - = cos(a
e T TR e VA T TREIE P FRRRTTI Mg O

We send the resulting quaternion to both our 3D asteroid vertex shader and to our billboard
vertex shader as instanced attributes that are unique to each vertex group tied to their instance.
As a 3D asteroid rotates depending on its given quaternion rotation, when the instance
transforms into its billboard counterpart, the same quaternion remains. This is important so we
can synchronise the 3D asteroid’s rotation to the tile that we select in its texture atlas.

The texture tile selection for the atlas depends on knowing the asteroid’s relative rotation to the
camera. Indeed, we need to take into account both the 3D asteroid’s rotation and the camera’s
orientation in space to deduce which tile we need to display on the billboard. After converting
the asteroid’s quaternion rotation to a proper transformation matrix, the relative rotation is found
by multiplying the inverse of the 3D asteroid’s rotation matrix by the camera’s rotation matrix.

Let M- be the camera’s rotation matrix, extracted from its view matrix, and M be the asteroid’s

rotation matrix, then the relative rotation M} is found like:

25

MR:MC : MAT

Note here we are using the transpose of the asteroid’s matrix instead of its inverse to save on
computation, because a rotation matrix is orthogonal and so its inverse is equal to its transpose.

Now, for us to find the proper index to select in our texture atlas, we need to solve for i and j in
our texture atlas equation in Section 3.7.

O -R 0 -R
. X X . y_ Y
l = - = -
2T J 2Tt
Pitch 6, and yaw Qy are extracted from the relative rotation matrix (My) by converting it to an
Euler vector. Finally, we round up the result to an integer before sending the (i, j) results to the

fragment shader, along with its template type number, so it can select the correct tile in the
texture atlas for display.

We have pitch and yaw, but we are still missing the roll rotation. As we discussed in the previous
section, we do not have roll orientations in our texture atlas. Our solution to simulate asteroid
rolls is to roll the billboards themselves. To do so, we first calculate the direction vector from the
billboard to the camera. This is so we can rotate the asteroid along this axis, facing the camera.

Let P, be the camera’s position in world space and P, be the billboard’s instanced position in

world space. We subtract them to get the direction axis Vy, :

Vdir - ”Pcam B Pbb”

Then, we simply multiply this axis by the roll angle 6, extracted from the Euler vector we got
from the asteroid’s rotation matrix and multiply it to the camera-billboard axis. After converting
the result to a matrix, we get a roll rotation R, :

1
R, = EulerToMatrix [Vgir - | 1
0.

We can then use this rotation matrix to transform our billboard matrix B into B '
B'=R. B

And finally, we can use the billboard’s x and y coordinates like in Section 3.6 to align it to the
camera, without affecting its roll.

26

With the billboard’s roll and the texture atlas pitch and yaw selections, we now cover all of the
3D asteroid’s rotations. Running the previous equations in real time, we achieve a very accurate
simulation of the 3D asteroids with our billboards (see Figure 12 and Figure 13).

Figure 12: A 3D asteroid rotating as its billboard follows the same transformations.

Figure 13: Screenshot of billboards in debug mode to visualize their texture atlas selections.

Figure 13 shows the asteroids and billboards being fully lit, as well as the billboard background
being opaque cyan, for us to be able to tell the difference when changing LODs. In practice, the
billboards appear farther away and their background is transparent, so the final result makes
them barely noticeable as we will see in the next chapter.

27

https://youtu.be/6Sy9RLwek0s

CHAPTER 4

RESULTS

In this chapter, we discuss the final results of the project completed in this internship. We look at
performance metrics such as frames per second and GPU memory usage. Then, we compare our
work to similar projects.

4.1 Performance

We ran our performance tests on an NVIDIA RTX™ A2000 with 6GB of VRAM and an Intel
Core™ 17-9700 at a resolution of 1920 by 1080 pixels. From the data we gathered from Steam
analytics, these specifications are representative of a typical midrange desktop configuration for
the average SpaceEngine user. We ran our tests on a million asteroid instances with five 3D LOD
levels going from ~1400 triangles down to ~500 triangles, and with billboards of only two
triangles and four vertices.

Figure 14: Screenshot of an asteroid field with a million instances running at 60 FPS.

With this set up, we are successfully able to render our scene at 60 frames per second (FPS) at
the worst case, that is the asteroid field completely on screen as zoomed out as much as possible
while still having all LODs shown. Because we are using large textures regardless of LODs

28

https://youtu.be/C1sQsMlbvZk

(4096 by 4096 diffuse and normal map textures for each template), we are consuming an
unnecessarily large amount of memory at around 1.1 GB of VRAM (GPU memory). Although
this could be easily remediated by using lower resolution textures, especially since the majority
of the asteroids are displayed as billboards or at low level of detail. This scene is
performance-wise GPU-bound because of our heavy use of GPU-based calculations while our
CPU workload remains minimal.

FPS Performance vs. Number of Asteroids

100

80

60

FPS

401

201

(9.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of Asteroids (in millions)

Figure 15: Performance depending on the number of asteroid instances in a constant volume.

The chart above illustrates the relationship between FPS and the number of asteroid instances,
tested on a computer with the specifications mentioned previously, within unchanging scene
bounds (otherwise if the scene size could change we could maintain high FPS at will because of
our frustum culling). At 250,000 instances, we have 97 FPS, decreasing to 83 FPS at 500,000
instances and 72 FPS at 750,000. Our target of 60 FPS is maintained at one million asteroids.
Beyond this, FPS starts dropping: 51 FPS at 1.25 million, 38 FPS at 1.5 million, 27 FPS at 1.75
million, and 16 FPS at two million instances. We can observe from the chart that rendering
efficiency decreases almost linearly with the studied scene complexity. Although, without
changing the volume where asteroids appear, beyond 1.5 million asteroids the scene starts to
look cramped and unrealistic. Billboards are the main reason for maintaining performance as the
number of asteroids increases, because they take up the vast majority of asteroids rendered,
depending on the camera’s positioning. Without them, we have around 25 FPS at a million
asteroids, on average. And without GPU frustum culling (using CPU frustum culling instead,
with mesh LODs) we have 20 FPS at only 100,000 asteroids. The software can not run in real

29

time at one million without the above two techniques mentioned. Lighting shading takes an
insignificant amount of computation for our scene. Removing our Phong shading for asteroids
and billboards merely increases our performance by one FPS, at best. The main way we have to
manipulate performance at the expense of visual accuracy is to simply change the distance at
which billboards and low-resolution meshes appear in our LOD system. In the future this will
most likely be a performance option for users to manipulate at their discretion.

Visual-wise, the main aesthetical concern with our billboards is their lack of 3D geometry with
regards to shading. Although our normals can simulate a lot of the intended shading we want on
them, we can not simulate the 3D depth of their “real” counterparts. On a resolution of 1920 by
1080 pixels, they are harder to notice but on higher resolutions they might be more noticeable as
they pop up on screen. To dissimulate the effect we would need to implement some sort of
fade-in and fade-out effect in-between LODs.

4.2 Comparison

The majority of video games do not attempt to render such a large quantity of instances in their
scenes. From observation, it would seem that most space-based video games use different
methods to render asteroid fields. In the game Elite Dangerous by Frontier Developments,
compared to our implementation, fewer asteroids are rendered on screen. To maintain
performance, the game only renders asteroids close enough to the camera and culls out those too
far away. To hide asteroids disappearing suddenly from view, they blend with distance fog to
visually mask distant asteroids. Although not scientifically realistic, the implemented fog is
perceptually convincing and makes for a visually pleasing scene. In contrast, Starfield by
Bethesda Game Studios appears to render even fewer asteroids than Elite Dangerous or our
implementation, but with significantly higher visual fidelity. The asteroids in Starfield have
comparatively very detailed geometry and texture resolution. Starfield’s approach favors
close-up visual detail and cinematic presentation, and likely makes use of numerous LOD
transitions instead of encumbering itself with the overhead of rendering a large number of
instances.

h.*‘.' b “ '

Figure 16: Screenshot of an asteroid field in Elite Dangerous (left) and in Starfield (right).

30

https://en.wikipedia.org/wiki/Frontier_Developments

CHAPTER 5

CONCLUSION

In this report, I presented the main project I worked on while at Cosmographic Software LLC. 1
applied GPU-based graphics optimization techniques within SpaceEngine, a real-time
astronomical visualization software. The primary objective, rendering millions of asteroid
instances efficiently at a stable performance of 60 frames per second on a mid-range hardware,
was achieved through the implementation of GPU-based frustum culling, dynamic level of detail,
and a special animated billboarding solution.

The developed GPU-based frustum culling system utilizes Vulkan's compute shaders to
significantly reduce unnecessary CPU processing by culling asteroid instances outside the
camera's view, using the GPU’s parallel processing. The implementation of a dynamic LOD
system further optimized rendering performance by adjusting mesh complexity based on camera
distance. The billboarding approach I implemented, with a texture atlas to animate asteroids,
effectively simulated the rotation of 3D asteroids without compromising visual realism.
However, such texture-based asteroids would not cast shadows on the surface of the planet,
which may affect realism.

The results of this internship include not only substantial performance improvements for asteroid
rendering but also laid the foundation for future applications within the engine, such as debris
rendering on the surface of planets. Debris would use the same suite of techniques used for the
asteroids, except a 2D atlas of textures to animate their billboards would not be needed, since
debris are not supposed to be able to rotate arbitrarily in any direction.

There are many areas to improve, some we mentioned in Chapter 4 on results. These include
adding fading between LODs to make transitions less noticeable, and adding performance
control options for the user such as LODs distance selection. Other future work would be
extending the current billboarding system to also support billboard clouds [5]. It is a useful
approach to render impostors using multiple billboards that support viewing an object from any
angle without using a very large texture atlas of multiple rotation views. Another area to think
about is how our billboards will work with Virtual Reality. Indeed, SpaceEngine supports Virtual
Reality in OpenGL, while its Vulkan implementation is still a work in progress. Once it is
implemented, it is important to test our project in Virtual Reality, to evaluate how billboard
alignment works with two views (human eyes) and to validate if our tile selection functions to
simulate asteroid rotation depending on camera position still work.

31

Another direction for future optimization would be to explore LOD systems for groups or
hierarchies of asteroids, instead of treating each asteroid instance individually. Group-level
culling and LODs could significantly reduce GPU workload when asteroids are distant or
clustered.

Outside of specifically asteroids, one thing that will improve realism for asteroid fields and
asteroid rings around planets is the simulation of dust-like particles. In a real universe, after
asteroids collide with each other, it would make sense to have much smaller rock particles
floating around. This would most likely require a particle system to be implemented, as
billboards would most likely not be suited for the task. An extension to this would be the use of
participating media to simulate volumetric effects such as light shafts in dusty regions, which
would probably make for good visuals. Lighting effects could also be improved by simulating
the glow of light around asteroids, when facing a light source such as a star. Adding a glow
effect, either through general post-processing or with a specialized asteroid fragment shader,
could help simulate how real light would interact from stars to asteroid surfaces.

Most of the SpaceEngine’s features such as stars, navigation physics, and other astronomical
objects are written in OpenGL. We are still in the progress of implementing them in Vulkan. As
more features get implemented in Vulkan, we will need to see how they interact with our asteroid
field performance-wise, and adjust accordingly. One thing we know will be a problem are
nebulas. They are implemented as volumetric clouds, so they take a lot of resources to run.
Asteroid fields might not be able to render inside them, so we will need to either find a different
way to display them inside nebula clouds or to simply disallow to render both at the same time.

In the end, the work done in this internship has provided valuable hands-on experience in
rendering programming and deepened my expertise in the Vulkan API. More specifically I
learned a lot about compute shader programming, real-time pipeline synchronisation (between
shaders and CPU-GPU communication), and graphics optimization techniques. All of this has
given me a strong foundation for further learning in the domain of real-time Computer Graphics.

32

33

REFERENCES

[1] Hipparcos Catalog https://www.cosmos.esa.int/web/hipparcos

[2] New General Catalogue of Nebulae and Clusters of Stars https://ngcicproject.observers.org/
[3] Hugues Hoppe, “Progressive Meshes” hhoppe https://hhoppe.com/proj/pm/
[4] Tamas Umenhofter, Laszlo Szirmay-Kalos, Gabor Szijarto “Spherical billboards and their

application to rendering explosions” ResearchGate

https://www.researchegate.net/publication/200019094 Spherical billboards and their applicatio

n_to_rendering_explosions

[5] X. Decoret, F. Durand, F.Sillion, , J. Dorsey “Billboard Clouds for Extreme Model

Simplification” Yale University

https://graphics.cs.yale.edu/publications/billboard-clouds-extreme-model-simplification

[Figure 1] Mykhailo Moroz,*“Visualizing General Relativity” Space Engine
https://spaceengine.org/articles/visualizing-general-relativity/

[Figure 2] Mohd Shahrizal, Abdullah Mohd,Tengku Sembok,
“Effective Range Detection Approach for Ancient Malacca Virtual Walkthrough”
ResearchGate

https://www.researchgate.net/publication/238687498 Effective Range Detection_Approach_for
_Ancient Malacca Virtual Walkthrough

[Figure 3] Saint Thomas, “LOD Document” Game Development Diary

https://moderndynamics.wordpress.com/year-2/object-orientated-design/lod-document/

34

https://www.cosmos.esa.int/web/hipparcos
https://ngcicproject.observers.org/
https://hhoppe.com/proj/pm/
https://www.researchgate.net/publication/200019094_Spherical_billboards_and_their_application_to_rendering_explosions
https://www.researchgate.net/publication/200019094_Spherical_billboards_and_their_application_to_rendering_explosions
https://graphics.cs.yale.edu/publications/billboard-clouds-extreme-model-simplification
https://spaceengine.org/articles/visualizing-general-relativity/
https://www.researchgate.net/publication/238687498_Effective_Range_Detection_Approach_for_Ancient_Malacca_Virtual_Walkthrough
https://www.researchgate.net/publication/238687498_Effective_Range_Detection_Approach_for_Ancient_Malacca_Virtual_Walkthrough
https://moderndynamics.wordpress.com/year-2/object-orientated-design/lod-document/

[Figure 4] Simone Barbieri, Ben Cawthorne, Zhidong Xiao, Xiaosong Yang “Repurpose 2D
Character Animations for a VR Environment Using BDH Shape Interpolation”, ResearchGate

d-B3-are-the-billboards-which_fig2 320730778

[Figure 5] Sasha Willems, “Compute Culling Screenshot” Vulkan Examples
https://github.com/SaschaWillems/Vulkan/blob/master/

[Figure 6] Jonas Sorgenfrei, “Introduction to GPU Computing” learnopengl

https://learnopengl.com/Guest-Articles/2022/Compute-Shaders/Introduction

[Figure 16 (left)] Rosy, “Elite Dangerous: Odyssey - Beautiful Planetary Ring” youtube
https://www.youtube.com/watch?v=IMnsunfzOHk

[Figure 16 (right)] Supernaut Games, “Starfield - The Tranquility of an Asteroid Field - 4K HDR
Showecase Series X” youtube https://www.voutube.com/watch?v=01G4]088fGOQ

35

https://www.researchgate.net/figure/This-example-shows-how-the-billboarding-works-B1-B2-and-B3-are-the-billboards-which_fig2_320730778
https://www.researchgate.net/figure/This-example-shows-how-the-billboarding-works-B1-B2-and-B3-are-the-billboards-which_fig2_320730778
https://github.com/SaschaWillems/Vulkan/blob/master/
https://learnopengl.com/Guest-Articles/2022/Compute-Shaders/Introduction
https://www.youtube.com/watch?v=JMnsunfz0Hk
https://www.youtube.com/watch?v=O1G4j088fGQ

36

	B' = Rz ⋅ B'

