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ABSTRACT 

 
This report details my internship at Cosmographic Software LLC, where I worked as a graphics 
programmer to implement a variety of GPU-based graphics optimisations for the software 
SpaceEngine, a real-time space simulation software. These optimisations can affect many aspects 
in the engine. They were implemented with the primary intent to render asteroid fields on screen. 
The main project of this internship was to implement the rendering of millions of instantiated 
asteroids in real time with little to no loss in visual fidelity. To accomplish that, I applied the 
following computer graphics optimization techniques: GPU-based per instance frustum culling 
with indirect draw, level of detail, and volumetric billboarding. The latter is based on a rotating 
texture atlas depending on the asteroid’s position and rotation and the camera’s position, rotation, 
and orientation. This resulted in the successful rendering of millions of asteroids at 60 frames per 
second. The implemented techniques have all been programmed from scratch in Vulkan. They 
are abstracted into the engine to be used for other scenarios in the future, such as rendering 
debris on the surface of planets. 
 
Keywords: 
Graphics programming, GPU optimization, Vulkan, Real-time rendering, Compute  
Shaders, Culling, Billboarding, Texture Atlas 
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RÉSUMÉ 

 
Ce rapport détaille mon stage chez Cosmographic Software LLC, où j'ai travaillé comme 
programmeur graphique pour mettre en œuvre une variété d'optimisations graphiques basées sur 
le GPU dans le logiciel SpaceEngine, un logiciel de simulation spatiale en temps réel. Ces 
techniques d'optimisation peuvent affecter de nombreux aspects dans le moteur. Elles ont été 
mises en œuvre avec l'intention de faire le rendu de champs d'astéroïdes à l'écran. Le projet 
principal de ce stage était de mettre en œuvre le rendu de millions d'astéroïdes instanciés en 
temps réel avec peu ou pas de perte de fidélité visuelle. Pour y parvenir, j'ai appliqué les 
techniques d'optimisation graphique suivantes : élimination d’instances hors pyramide basée sur 
GPU avec indirect draw, niveaux de détails, et le billboarding volumétrique. Ce dernier se met à 
jour sur un atlas de texture rotatif en fonction de la position et de la rotation de l'astéroïde et de la 
position, de la rotation et de l'orientation de la caméra. Cela a permis de rendre avec succès des 
millions d’astéroïdes à 60 images par seconde. Les techniques mises en œuvre ont toutes été 
programmées à partir de zéro dans Vulkan. Elles sont abstraites dans le moteur pour être utilisées 
pour d'autres scénarios dans le futur, par exemple, le rendu des débris à la surface des planètes. 
 
Mot Clés: 
Infographie, optimisation GPU, Vulkan, rendu en temps réel, Compute Shaders, 
élimination, Billboarding, atlas de textures. 
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CONTENTS 

 
The structure of this report is organized into five chapters. Chapter 1 introduces Cosmographic 
Software LLC, outlines its main project SpaceEngine, and describes the internship objectives and 
context. Chapter 2 provides essential background information on various computer graphics 
optimization techniques relevant to the internship, including frustum culling, GPU-based frustum 
culling, level of detail (LOD) for meshes, billboarding, textures, and texture atlases. Chapter 3 
presents the detailed modeling and implementation of my solutions, covering the GPU instancing 
data structure, GPU-based frustum culling, the level-of-detail system, and the special 
billboarding system that I built to simulate 3D rotation animations on a 2D billboard. Chapter 4 
goes into the results, discussing performance, visuals and comparisons of related projects. 
Finally, Chapter 5 concludes the report by summarizing achievements of the internship and 
discussing possible future work.  
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CHAPTER 1 

 

INTRODUCTION 

 
 
 
Cosmographic Software LLC is a company specialized in the development of real-time 
simulation and visualization of astronomy and astrophysics. At the time of this report, the 
company is based in the United States in New Haven, Connecticut. It counts fifteen full-time 
employees. Founded in 2022, Cosmographic Software is owned by Vladimir Romanyuk, a 
Russian astronomer and computer graphics programmer, and managed by Alexander T. Long, 
acting as Chief Operating Officer of the company. Although the company was founded recently, 
Cosmographic’s main project, SpaceEngine, has been in development by Vladimir since before 
2010. 
 
The main project of the company is a real-time space simulation software called SpaceEngine 
(Figure 1). It is a 3D astronomical visualization software that allows users to explore and 
navigate through the universe in real time, with a focus on scientific accuracy and attention to 
details. SpaceEngine allows users to explore real scenarios, such as the Solar System, or 
hypothetical scenarios, such as procedurally generated star systems. It can also customize 
celestial objects such as planets. It features hundreds of thousands of real celestial objects 
registered in astronomical catalogs, such as from the Hipparcos catalog [1] and from the New 
General Catalogue of Nebulae and Clusters of Stars [2]. Each of these real objects are placed 
accurately where they exist in a universe, the size of over 32.6 billion light-years on each side, 
centered on the barycenter of the Solar System. They are visually represented as scientifically 
realistic as possible. Besides these real objects, SpaceEngine also makes use of realistic 
procedural generation based on real scientific data to generate most of its universe, which results 
in extremely accurate real-time simulation of space. Cosmographic employs three physicists with 
various roles to ensure the scientific accuracy of the software. 
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Figure 1: SpaceEngine’s General Relativity Visualisation. 
 
The SpaceEngine development team is composed of three graphics programmers and two 
general programmers. Of  the two graphics programmers, Vladimir, the owner of the company, 
also acts as an authority for accurate space simulation because of his astrophysics background. 
Peter Ohlmann, my internship supervisor, is a talented graphics programmer with over 30 years 
of development experience in the video game industry while being an expert in Vulkan graphics. 
 
The internship lasted ten months, from March to December 2024. My project was to efficiently 
render millions of asteroids on screen by combining multiple computer graphics techniques, and 
to develop the Vulkan infrastructure needed for the task and potential future ones. The main tools 
of the project were C++ for general programming, GLSL for shader programming, Vulkan for 
the graphics API, RenderDoc and Imgui for debugging.  
 
​
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CHAPTER 2 
 

BACKGROUND 

 

 
In this section, we discuss several common techniques that are used to optimize rendering 
performance and that were used during this internship. We start with frustum culling, a classic 
technique to discards objects outside the camera’s view pyramid in order to reduce unnecessary 
drawing. Next, we discuss GPU-based frustum culling, a modern alternative where the culling 
work is offloaded to the GPU to better leverage parallel processing. Afterwards, we discuss mesh 
level of detail (LOD) of meshes, a method to dynamically adjust the number of vertices count 
based on camera distance to save on computational costs. We then go over billboards, an 
optimization technique about displaying objects as textures on a 2D rectangle. Finally, we look at 
textures, a fundamental concept in computer graphics, and then at texture atlases, which combine 
multiple textures into a single one to reduce the overhead of texture binding and draw calls. 
 
 
 

2.1​ Frustum Culling 
Frustum Culling is a common object culling technique used in computer graphics to improve 
rendering performance. The main objective of frustum culling is to avoid rendering or 
instantiating objects that are outside of the view pyramid. The majority of frustum culling 
techniques are implemented on the CPU to avoid sending useless processing to the GPU before a 
3D scene is loaded into it. This is done first by constructing the camera’s view frustum, which is 
a portion of a solid like a cone or truncated pyramid that represents the volume of vision of a 
camera. It is made of six planes named from the camera’s point of view : left, right, top, bottom 
with a near plane and a far plane to limit rendering distance. 
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Figure 2: View Frustum. 
 
The most common way to check if an object is inside or outside the view frustum is to test its 
bounding volume against each of the frustum’s infinite planes. It can be done, for example, by 
taking the dot product of the plane’s normal with the center of the bounding volume of the 
object, which will return us the distance the object is along the normal. We can use this result to 
determine which side of the plane the object lies on. If the normals of the planes point inward, 
and the result of a dot product between one of the planes is smaller than the negative distance to 
the center of the bounding volume, then it would mean the object is outside of the view frustum 
and it can be culled. It is also common to test all eight vertices of the bounding volume to 
provide more precise results at the cost of efficiency. 
 
 
 
2.2​ GPU-based Frustum Culling 

An alternative and more modern technique for implementing frustum culling is called 
GPU-based Frustum Culling, also called Compute Shader Culling or GPU Instance Culling. It is 
a technique that forwards culling computations to the GPU rather than on the CPU, using 
compute shaders and indirect rendering. The main advantage of doing it this way is to benefit 
from the huge parallelism potential of compute shaders which can process many objects at once 
without sending data back and forth between CPU and GPU.  This is done by having a list of 
object data stored on the GPU buffer, and a compute shader to cull them before the vertex 
shading phase. The compute shader algorithm to check if an object is within the limits of a 
frustum pyramid is similar to any typical implementation, the difference is that, instead of 
iterating over each object one at a time on the CPU, the GPU processes all objects in parallel. 
This can be done with bounding volumes or using only the object’s center position, provided that 
they are spherical enough. Then, this is where indirect rendering comes in. Instead of sending 
individual draw calls from the CPU, the GPU handles it. The compute shader writes draw 
commands into a buffer (usually a DrawIndirect or DrawIndexedIndirect buffer). Each command 
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contains all the information needed to render a mesh: the number of vertices, indices, the 
instance count, and offsets into the mesh and material buffers. The graphics pipeline then 
consumes this buffer directly with a single DrawIndirect or DrawIndexedIndirect call. 
 
 
 
2.3​ Level Of Detail (LOD) of meshes 
Level Of Detail of meshes, often abbreviated LOD, is a technique used to optimize rendering 
performance by adjusting the complexity of a mesh based on its distance from the camera. The 
basic principle is that objects further away from the camera do not need as many details because 
they appear smaller on screen, so lower-resolution versions of those meshes can be used to 
reduce the amount of computations needed. 
 

 
        Figure 3: Level Of Detail. 
 
A typical LOD system involves creating several versions of the same model, each with a 
different polygon count. High-resolution meshes are displayed when the object is close to the 
camera, while lower-resolution meshes are substituted in as the object moves further away. The 
transition between LODs is usually based on distance thresholds, although more advanced 
systems might factor in screen-space size or other metrics. If transition between LOD models is 
too apparent on screen, Hughes Hoppe’s progressive meshes [3] provides a solution with its 
encoding of a continuous LOD representation with smooth, seemingly continuous transitions, at 
the cost of performance. 
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2.4​ Billboards 
Billboards are a rendering technique to display 2D quadrilaterals that are used to represent 
objects in a 3D scene, usually for objects like trees, particles, or distant objects. Instead of 
rendering complex 3D geometry, a billboard is a flat, two-dimensional rectangle with a texture 
mapped onto it, often with transparency. Billboards are usually implemented in a way such that 
their orientation always remains perpendicular to the viewer to display their texture, maintaining 
the illusion of volume despite being flat. Because they only require four vertices, billboards are 
computationally very efficient to render. 
 

 
   Figure 4: Billboards. 

 
 
 
2.5​ Textures 

Textures are 2D images applied to the surfaces of 3D models to add color. They are typically 
mapped onto the surface of an object using UV coordinates. That tells the shader how to wrap 
the 2D image around the 3D shape. There are different types of textures, with different purposes, 
to name a few: diffuse or albedo textures define base colors, normal maps simulate surface 
bumps by perturbing normal vectors on the 3D model, and specular or roughness maps define 
how shiny or matte a surface appears. Textures are stored in GPU memory and sampled during 
rendering, very often in the fragment shader, to determine the final appearance of each pixel on 
the screen. 
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2.6​ Texture Atlas 

A texture atlas is a single large texture that contains a collection of smaller textures, often 
referred to as sub-textures or sprites. Instead of binding and switching between multiple textures 
during rendering, a texture atlas allows objects to sample from different regions of the same 
texture. This is often used to reduce the number of texture binds and draw calls, which improves 
rendering performance. Each sub-texture within an atlas is mapped to specific UV coordinates in 
a shader (often the fragment shader), which knows which part of the atlas to sample from for a 
given object and a given view direction. Texture atlases are commonly used for concepts like UI 
elements, animated 2D billboards, or different material variations on objects.  
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CHAPTER 3 
 

MODELLING 

 

 
In this chapter, we will go through the detailed modeling of the solutions implemented to 
successfully render millions of asteroids in real time. The chapter has eight sections, detailing the 
most important steps for this project. We start with an introduction describing the problem we 
need to solve and some context surrounding it. Then for the first three sections we detail how we 
implemented our frustum culling solution. First, we see how the compute shader was set up in 
the engine, then in a second section we see how we organised the asteroids’ data on the GPU and 
finally, on a third section we look at the main frustum culling algorithm inside our compute 
shader to conclude the GPU-based frustum culling technique. Afterwards, we have a section on 
our LOD template structure and we explain how we define our distance function for choosing the 
correct LOD for a given asteroid. Then in the following section, we jump into billboards that 
represent asteroids at the lowest level of detail. Then in the next section we explain how we 
implemented our texture atlas and finally for the section, we explain how we animated our 
billboards using the texture atlas. 
 
 
 
3.1​ Introduction 
The main problem we were trying to solve in this project is the ability to render millions of 
realistic asteroids on screen within at least 60 frames per second on mid-range computer 
hardware. Before my internship, there had been a previous attempt by another graphics 
programmer at solving this problem with the use of ray marching. The idea was to procedurally 
generate organic shapes with the use of signed distance functions (SDF) in screen space, entirely 
in a fragment shader. However, this process required too many computations per pixel, and could 
not reliably generate millions of asteroids on screen without a heavy loss of performance. 
Additionally, because the asteroids were all generated in the fragment shader phase of the 
graphics pipeline, they could not be distinguished as individual objects in our engine. This meant 
the asteroids could not interact with the player using various features present in our engine, such 
as clicking on an astronomical object to open an information window about it. Although the ray 
marching solution was mathematically complex, its advantage was that it was structurally 
simple, the majority of its code being contained in a single fragment shader. But in the end, this 
solution was simply not efficient enough, so we needed something else. We took inspiration from 
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one of Shasha Willems’s Vulkan projects. For context, Shasha Willems is a Khronos Group 
developer and advisory panel member. He is known for being one of the most respected Vulkan 
experts. He provided multiple tutorials and example projects implementing a variety of real-time 
computer graphic techniques using the Vulkan API. One of which was using computer shaders to 
implement GPU-based frustum culling to render tens of thousands of Suzanne objects with the 
help of distance-based levels of detail (see Figure 5). This was a good start for our project. 
However, we needed to render millions of asteroids with more polygons than a Suzanne model, 
more variety (multiple different asteroids), and within an engine that takes up additional 
processes (user interface, player controls, post processing, etc.). So additional rendering 
optimization techniques were needed, such as our billboarding system which we will discuss in 
detail later in this chapter. 
 

 
Figure 5: Sasha’s Vulkan example with multiple instances of the Suzanne geometric model. 
 
 
 
3.2​ Compute Shader Structure 

Before this internship, our project did not support any compute shader, and so, all the structures 
and pipelines in our Vulkan engine had to be built from scratch. Once that was done, our very 
first compute shader was written to optimize our asteroid fields by doing view frustum culling on 
the GPU. To make it as optimal as possible, the compute shader executes prior to the vertex and 
fragment shaders in the graphics pipeline, optimizing the rendering process by culling 
unnecessary geometry before any kind of rasterization occurs. This significantly reduces the 
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workload for subsequent shader stages by discarding asteroids not visible within the camera's 
view. It is made especially efficient because we are executing the culling code for each asteroid 
in parallel on the GPU. Indeed, we defined the compute shader in a way so that it dispatches one 
compute invocation per asteroid instance. 
 
 

 
​ ​    Figure 6: A work group split by its local size (typically by 16). 
 
Compute shader dispatches are always defined in three dimensions, x, y, z, each with their own 
number of local workgroups (Figure 6). For our culling implementation, we only need to use one 
dimension, therefore we define our dispatch like so: 
 

CommandBuffer.Dispatch(instance_count / 16, 1, 1); 
 
The number of dispatched groups is calculated based on the total number of instances divided by 
the workgroup size to ensure complete coverage of all asteroid instances. 

The invocation is organized into workgroups, each containing 16 threads as specified in the 
compute shader by the local workgroup size (local_size_x = 16). Therefore, the total number of 
workgroups dispatched is computed as instance_count / 16 to ensure all asteroid instances are 
processed. This division allows efficient GPU utilization, balancing workload evenly across 
multiple shader cores. 

To dispatch and organize the compute shader within the engine, eight buffers and descriptors are 
initialized.  

We have one uniform buffer to contain the camera's position, the origin of the asteroid field, and 
the frustum planes for culling computations. This buffer needs to be of uniform storage qualifier 
because its variables need to be updated each frame. Indeed, both the camera and the frustum 

16 



 

planes need to move as the player flies around, and we need the asteroid field to be able to be 
displaceable too. 

We have three read-only storage buffers that are loaded at the start of the scene: a buffer for the 
asteroid’s positions that stores the world-space positions of each asteroid instance, another for 
their template type that stores identifiers for the type of asteroid template assigned to each 
instance (as we will see later, we have multiple different shapes of asteroids), and finally a buffer 
for their vertex index ranges that stores precomputed index ranges used to render different 
asteroid templates and LODs efficiently. 

We have two write-only indirect draw buffers that hold indirect draw commands, which we will 
discuss in the next section. 

Finally, we have an atomic counter buffer to track the number of visible instances, facilitating 
dynamic indexing into yet another write-only buffer that records visible instances. 

 
 
 
3.3​ Draw Indirect Data Structure 

For our project, we made use of indirect draws to render our asteroids. An indirect draw 
command allows the GPU to execute rendering calls directly based on data stored within the 
GPU memory, without additional CPU overhead per draw call. This method reduces CPU-GPU 
synchronization, which significantly improves rendering efficiency, especially when rendering a 
large number of objects like in our case. We use Vulkan’s vkCmdDrawIndexedIndirect to render 
our large number of instances directly on the GPU. For this, we had to prepare an indirect draw 
buffer containing draw parameters. In our compute shader, we have two indirect draw write-only 
buffers with the following structure of parameters: index count, instance count, first index, vertex 
offset, and first instance. The index count defines how many indices to read for rendering an 
object's geometry from the index buffer, and the instance count specifies how many instances of 
that geometry should be drawn. Setting that last parameter to zero skips rendering the geometry, 
which is important for our culling algorithm. The first index is the starting point within the index 
buffer from which indices are read. The vertex offset is added to each vertex index to efficiently 
reuse geometry data, and the first instance identifies the starting instance ID used by shaders to 
differentiate multiple instances during rendering. 
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3.4​ Frustum Culling Algorithm 

Here is a simplified version of our asteroid frustum culling algorithm in our compute shader. As 
mentioned previously, this algorithm runs in parallel for every asteroid instance. 

 

 
 
We can separate the algorithm in three steps: 
 
First, each asteroid instance position, stored in the position buffer, is transformed into world 
space by adding the asteroid field origin defined in our uniform buffer. The transformed positions 
are then individually checked against the view frustum using a function that iterates through the 
six frustum planes provided by our uniform buffer. For each asteroid instance, a dot product 
calculation checks its spatial relationship to each plane. After the result, we then add the radius 
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of our roughly-spherical asteroid. If an instance is behind one frustum plane (indicating it is 
outside the camera's view), its instance count in their indirect draw buffer is set to zero to cull it 
from being drawn. 
 
Then, an atomic counter buffer tracks the number of visible asteroid instances. Each time an 
asteroid passes the frustum checks, it increments the atomic count. An atomic counter is a special 
type of variable that allows safe incrementing or decrementing from multiple threads 
simultaneously on the GPU. It ensures that each thread sees a unique, consistent value without 
conflicts or race conditions. This counter’s output is used to index into a visible index buffer, 
effectively compiling a compact list of indices corresponding exclusively to visible asteroid 
instances that is updated at each frame. 
 
Finally, asteroids determined to be within the frustum have their mesh data assigned to their 
indirect draw buffer with an appropriate level of detail (LOD) based on their distance from the 
camera. The farthest ones are rendered as billboards, which we will see in more details in the 
next section. 
 
 
 
3.5​ Asteroid Templates and LOD Structure 

We have five different template types for our asteroids, each with different shapes and sizes to 
give our asteroids more variety. Each of these templates are further subdivided into five different 
LODs, for a total of 25 different meshes. At the time of working on this project, the LODs and 
templates only varied in geometry, their textures and materials remained unchanged, although it 
would be a simple modification. We store all 25 meshes in a read-only buffer that organises these 
templates sequentially by indexing each template with their following LODs. For each mesh, we 
store its first index and index count so we can, for a given instance inside the frustum for the 
field of view, write them into the indirect draw buffer for rendering. The handling of vertex 
indices for each instance is done in the compute shader. It is not shown in Algorithm 1 to not 
distract the reader from the essentials of the algorithm. The initial storage process is done before 
the asteroid scene loads and does not need to be redone again. An asteroid template is assigned to 
each instance randomly, while the LODs are defined by distance with a clamping function as 
seen in Algorithm 1. The shorter the distance, the lower the LOD number. An LOD level of zero 
indicates the highest level of detail possible, while a larger LOD value calls for lower details. 
Going from zero to four, we have a total of five different LOD meshes for each template. 
However, we defined our max_LOD count to be five, so our clamping function can return a 
larger LOD number than we have meshes for. This is because we reserve the very last LOD level 
for our billboards, which are stored in a different draw indirect buffer. Our billboards are our 
simplest meshes, with the lowest level of detail because they consist of only four vertices and a 
low-resolution texture. With GPU-based frustum culling and our LOD system with billboards, 
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our engine is already capable of running scenes of more than one million asteroids at 60 FPS 
(frames per second) on a mid-range graphics card. Below in Figure 7 is a screenshot of the LOD 
system at work, with the billboards having bright placeholder texture in debug mode so we can 
differentiate them more easily. 
 

 
Figure 7: Screenshot of the LOD system at work. 
​
 
 
3.6​ Orientating Billboards 

At our lowest level of detail, we have billboards. Their geometry is implemented with a simple 
rectangle defined by four vertices forming a 2D square. For billboards to work properly, their 
plane of support needs to always be oriented towards the camera. We accomplish this by defining 
a special transformation in their vertex shader. For most applications, billboards have two ways 
of orienting themselves towards the camera, either by doing cylindrical. Or spherical  
billboarding [4]. Cylindrical billboards rotate only around a single axis, typically the Y-axis. This 
is especially useful for an object like a tree, where we want it to face the camera as we move 
horizontally around the object, but to remain upright when viewed from above or below. Indeed, 
allowing full rotation would make the object appear to tilt or uproot unnaturally, breaking the 
illusion that they are anchored to the ground. In our case, where we simulate asteroids in space, 
spherical billboarding is the better alignment. Spherical billboards rotate to face the camera from 
all view directions. We need this because asteroids in the void are not rooted to any direction and 
can be seen from any direction.  
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To orient a billboard such that it always faces the camera in the vertex shader, we use vectors 
pre-calculated by our view matrix and we apply the following calculations. 
 
Let: 

●​ Pworld   be the billboard’s center position in world space. 

●​ Rworld   be the camera’s vector pointing to its right in world space. 

●​ Uworld   be the camera’s vector pointing above (up) itself in world space. 
 
For each x and y coordinates in local space of a vertex belonging to the billboard rectangle, we 

compute our vertex to world space Vworld : 
 

Vworld = Pworld + xlocal ⋅ Rworld + ylocal ⋅ Uworld  
 

Finally, we transform our world space vertex to clip space, Vclip , by multiplying it with our 
model-view-projection matrix (MMVP): 
 

Vclip = MMVP ⋅ Vworld 

 
The above method works because the camera’s right and up vectors, extracted from the camera’s 
orientation in world space, define the plane perpendicular to the camera’s viewing direction. By 
offsetting each billboard vertex along these vectors, the quadrilateral is constructed to always lie 
parallel to the camera’s image plane, regardless of the camera’s position and orientation. This is 
illustrated in Figure 8. 
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Figure 8: Screenshot of billboards with placeholder textures aligning themselves to the camera. 
 
Next, in the fragment shader we can apply the albedo and normal map textures. These are 
obtained by pre-rendering the “front view” of each asteroid template before the scene loads. We 
can then apply normal Phong shading to our billboard. The normal map will approximate what 
the asteroid would look like if it were lit in 3D. Our asteroids can seemingly transition from 2D 
to 3D, but obviously only if our camera does not change its orientation and if our asteroids 
remain still. Both of which are not true, because our camera can move and look in any direction, 
and the asteroids all rotate arbitrarily in space. So in our scenario, the billboards will 
immediately lose their synchronisation to our 3D asteroids. To solve this problem, we need to 
think about building a texture atlas with every asteroid orientation, depending on our camera’s 
position and orientation relative to our billboards, and also depending on our asteroid’s current 
transformation. 
 
 
 
3.7​ Billboard Texture Atlas  
For our billboards to accurately simulate our 3D asteroids from far away, we need them to update 
their texture as the asteroid rotates or as the camera changes orientation. In many billboard 
applications in real-time engines, texture atlases are used to animate different angles of a 3D 
object onto a billboard. A common case is for foliage. A series of textures are kept in an atlas, 
where each texture is rendered from a different angle of the foliage all around their vertical axis. 
For that last example, the atlas would only need to extend to one dimension, because we only 
have to capture the foliage’s yaw axis (y-axis). For our case, we need more than only the yaw 
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axis. Before the scene loads, we rotate each asteroid shape at various angles in front of a camera 
that renders them into a texture. We then place each texture in a 2D texture atlas. 
 
More precisely, we divide our billboard texture atlas into a grid, defining its resolution by  𝑅

𝑥

columns horizontally (pitch/x rotations) and  rows vertically (yaw/y rotations). For each cell of 𝑅
𝑦

the grid located at coordinates (i, j) we calculate pitch and yaw angles that evenly sample the 
asteroid's rotation space:  
 

 θ
𝑝𝑖𝑡𝑐ℎ

(𝑖) =  2π · 𝑖
𝑅

𝑥
                θ

𝑦𝑎𝑤
(𝑗) =  2π · 𝑗

𝑅
𝑦

       
 

This gives us evenly spaced rotations from 0 to 2π for each texture atlas tile. We then input these 
sampled orientations into a combination of rotation matrices to have a complete atlas of all pitch 
and yaw rotations of our asteroids, like the images (see Figure 9) shown for an atlas of 32 by 32 
textures. 

   
  Figure 9: On the left, an asteroid's pitch and yaw texture atlas visualized in its normal map. 

            On the right, a representation of its orientation with an arrow to help visualization. 
 
However, we quickly fall into a major problem. We have pitch and yaw rotations, but we are 
missing roll. A 3D asteroid can rotate in all three axes of rotation, and the space engine camera 
can look at an object from any angle, Therefore, we would inevitably miss many possible 
asteroid orientations in our texture atlas. Suppose our camera faces an asteroid rotating purely on 
its yaw angle. If we do not move our camera, we would be able to accurately animate our 
asteroid by cycling through the first row of our pitch/yaw texture atlas. However, as soon as we 
move around the asteroid to observe it from a different angle, immediately we will face missing 
rotations, because from our point of view, the asteroid will now be doing a roll rotation that is 
absent from our atlas (see Figure 10). 
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Figure 10: An arrow doing a pitch rotation from one view angle, and a roll from another angle. 
 
The naive solution to this problem would be to build a 3D texture atlas that includes all rotation 
angles. But, because our texture atlas is 32 by 32 textures, increasing its dimension would make 
it 32 times larger! Considering we have five different asteroid shapes to load into our GPU, five 
3D texture atlases of 32 by 32 by 32 textures (163,840 in total) would be an unacceptable 
demand in memory size.  
 
The actual solution to this problem is, in fact, simple. We keep our 2D pitch and yaw texture 
atlas. However, when a roll is being performed, either by the camera or by the asteroid, we 
simply roll the billboard itself directly in its vertex shader to simulate it. Although the idea is 
simple, we are only halfway done. We still need to find the mathematical function (discussed in 
the next section) to map a 3D asteroid rotation to a 2D atlas, with a proper billboard roll. 
 
In the end, for the billboard fragment shader, where we apply its textures, we load a texture atlas 
of five texture atlases for each asteroid shape, which in turn has 32 by 32 textures. In total, this 
corresponds to one large texture atlas of 160 by 32 textures (tiles) (see Figure 11). The tile 
selection is done in the billboard’s vertex shader where we calculate its (i, j) index given as input 
to the fragment shader. 
 

 
Figure 11: Texture atlas of texture atlases of asteroid rotations for five shape templates.  
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3.8​ Animating Billboards 
Every asteroid instance is given a random rotation axis in a 3D vector:  

v = (rx​, ry​, rz ​) | rx​, ry​, rz ∈ [0, 1] 
The vector is normalized and converted into a quaternion. To represent rotations using 
quaternions, we convert from the axis-angle representation to a quaternion form. Given an 
arbitrary vector v, we interpret its direction as the rotation axis and its magnitude ||v|| as the 
rotation angle θ.  
 
We thus define: 
 

 θ =  ||𝑣||        𝑢 =  𝑣
||𝑣||

A quaternion q representing a rotation of angle θ about a unit axis u is defined: 
 

) 𝑞 =  (cos θ
2 ,  𝑢 sin θ

2

The half angle α is defined as: 
 

   α =  ||𝑣|| 
2

We can calculate each dimension of a quaternion by combining the previous equations: 
 

,  ,   𝑞
𝑥

= 𝑣
𝑥

·  
sin(α)
||𝑣||    𝑞

𝑦
= 𝑣

𝑦
·

sin(α)
||𝑣||    𝑞

𝑧
= 𝑣

𝑧
·

sin(α)
||𝑣|| ,   𝑞

𝑤
= cos(α)

 
 
We send the resulting quaternion to both our 3D asteroid vertex shader and to our billboard 
vertex shader as instanced attributes that are unique to each vertex group tied to their instance. 
As a 3D asteroid rotates depending on its given quaternion rotation, when the instance 
transforms into its billboard counterpart, the same quaternion remains. This is important so we 
can synchronise the 3D asteroid’s rotation to the tile that we select in its texture atlas. 

The texture tile selection for the atlas depends on knowing the asteroid’s relative rotation to the 
camera. Indeed, we need to take into account both the 3D asteroid’s rotation and the camera’s 
orientation in space to deduce which tile we need to display on the billboard. After converting 
the asteroid’s quaternion rotation to a proper transformation matrix, the relative rotation is found 
by multiplying the inverse of the 3D asteroid’s rotation matrix by the camera’s rotation matrix. 
Let MC be the camera’s rotation matrix, extracted from its view matrix, and MA be the asteroid’s 

rotation matrix, then the relative rotation MR is found like: 
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MR = MC ⋅ MA
T 

Note here we are using the transpose of the asteroid’s matrix instead of its inverse to save on 
computation, because a rotation matrix is orthogonal and so its inverse is equal to its transpose.  

Now, for us to find the proper index to select in our texture atlas, we need to solve for i and j in 
our texture atlas equation in Section 3.7.     

        𝑖 =  
θ

𝑥
· 𝑅

𝑥

2π 𝑗 =  
θ

𝑦
· 𝑅

𝑦

2π

Pitch θx and yaw θy  are extracted from the relative rotation matrix (MR) by converting it to an 
Euler vector. Finally, we round up the result to an integer before sending the (i, j) results to the 
fragment shader, along with its template type number, so it can select the correct tile in the 
texture atlas for display.  

We have pitch and yaw, but we are still missing the roll rotation. As we discussed in the previous 
section, we do not have roll orientations in our texture atlas. Our solution to simulate asteroid 
rolls is to roll the billboards themselves. To do so, we first calculate the direction vector from the 
billboard to the camera. This is so we can rotate the asteroid along this axis, facing the camera. 
Let Pcam be the camera’s position in world space and  Pbb be the billboard’s instanced position in 
world space. We subtract them to get the direction axis Vdir : 

 𝑉
𝑑𝑖𝑟

= ||𝑃
𝑐𝑎𝑚

−  𝑃
𝑏𝑏

||

Then, we simply multiply this axis by the roll angle θz extracted from the Euler vector we got 
from the asteroid’s rotation matrix and multiply it to the camera-billboard axis. After converting 
the result to a matrix, we get a roll rotation Rz : 

                      
                                     Rz     =              

 

We can then use this rotation matrix to transform our billboard matrix B into B   '

B = Rz ⋅ B  ' ' 

And finally, we can use the billboard’s x and y coordinates like in Section 3.6 to align it to the 
camera, without affecting its roll.  
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With the billboard’s roll and the texture atlas pitch and yaw selections, we now cover all of the 
3D asteroid’s rotations. Running the previous equations in real time, we achieve a very accurate 
simulation of the 3D asteroids with our billboards (see Figure 12 and Figure 13). 

                                                       
Figure 12: A 3D asteroid rotating as its billboard follows the same transformations. 

 

 

Figure 13: Screenshot of billboards in debug mode to visualize their texture atlas selections. 

Figure 13 shows the asteroids and billboards being fully lit, as well as the billboard background 
being opaque cyan, for us to be able to tell the difference when changing LODs. In practice, the 
billboards appear farther away and their background is transparent, so the final result makes 
them barely noticeable as we will see in the next chapter. 
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CHAPTER 4 
 

RESULTS 

 

 
In this chapter, we discuss the final results of the project completed in this internship. We look at 
performance metrics such as frames per second and GPU memory usage. Then, we compare our 
work to similar projects.  
 
 
4.1​ Performance 
We ran our performance tests on an NVIDIA RTXTM A2000 with 6GB of VRAM and an Intel 
CoreTM i7-9700 at a resolution of 1920 by 1080 pixels. From the data we gathered from Steam 
analytics, these specifications are representative of a typical midrange desktop configuration for 
the average SpaceEngine user. We ran our tests on a million asteroid instances with five 3D LOD 
levels going from ~1400 triangles down to ~500 triangles, and with billboards of only two 
triangles and four vertices.  
 

 
   Figure 14: Screenshot of an asteroid field with a million instances running at 60 FPS. 

 
With this set up, we are successfully able to render our scene at 60 frames per second (FPS) at 
the worst case, that is the asteroid field completely on screen as zoomed out as much as possible 
while still having all LODs shown. Because we are using large textures regardless of LODs 
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(4096 by 4096 diffuse and normal map textures for each template), we are consuming an 
unnecessarily large amount of memory at around 1.1 GB of VRAM (GPU memory). Although 
this could be easily remediated by using lower resolution textures, especially since the majority 
of the asteroids are displayed as billboards or at low level of detail. This scene is 
performance-wise GPU-bound because of our heavy use of GPU-based calculations while our 
CPU workload remains minimal. 
 

 
 Figure 15: Performance depending on the number of asteroid instances in a constant volume. 
 
The chart above illustrates the relationship between FPS and the number of asteroid instances, 
tested on a computer with the specifications mentioned previously, within unchanging scene 
bounds (otherwise if the scene size could change we could maintain high FPS at will because of 
our frustum culling). At 250,000 instances, we have 97 FPS, decreasing to 83 FPS at 500,000 
instances and 72 FPS at 750,000. Our target of 60 FPS is maintained at one million asteroids. 
Beyond this, FPS starts dropping: 51 FPS at 1.25 million, 38 FPS at 1.5 million, 27 FPS at 1.75 
million, and 16 FPS at two million instances. We can observe from the chart that rendering 
efficiency decreases almost linearly with the studied scene complexity. Although, without 
changing the volume where asteroids appear, beyond 1.5 million asteroids the scene starts to 
look cramped and unrealistic. Billboards are the main reason for maintaining performance as the 
number of asteroids increases, because they take up the vast majority of asteroids rendered, 
depending on the camera’s positioning. Without them, we have around 25 FPS at a million 
asteroids, on average. And without GPU frustum culling (using CPU frustum culling instead, 
with mesh LODs) we have 20 FPS at only 100,000 asteroids. The software can not run in real 
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time at one million without the above two techniques mentioned. Lighting shading takes an 
insignificant amount of computation for our scene. Removing our Phong shading for asteroids 
and billboards merely increases our performance by one FPS, at best. The main way we have to 
manipulate performance at the expense of visual accuracy is to simply change the distance at 
which billboards and low-resolution meshes appear in our LOD system. In the future this will 
most likely be a performance option for users to manipulate at their discretion.  
 
Visual-wise, the main aesthetical concern with our billboards is their lack of 3D geometry with 
regards to shading. Although our normals can simulate a lot of the intended shading we want on 
them, we can not simulate the 3D depth of their “real” counterparts. On a resolution of 1920 by 
1080 pixels, they are harder to notice but on higher resolutions they might be more noticeable as 
they pop up on screen. To dissimulate the effect we would need to implement some sort of 
fade-in and fade-out effect in-between LODs. 
 
 
4.2​ Comparison 
The majority of video games do not attempt to render such a large quantity of instances in their 
scenes. From observation, it would seem that most space-based video games use different 
methods to render asteroid fields. In the game Elite Dangerous by Frontier Developments, 
compared to our implementation, fewer asteroids are rendered on screen. To maintain 
performance, the game only renders asteroids close enough to the camera and culls out those too 
far away. To hide asteroids disappearing suddenly from view, they blend with distance fog to 
visually mask distant asteroids. Although not scientifically realistic, the implemented fog is 
perceptually convincing and makes for a visually pleasing scene. In contrast, Starfield by 
Bethesda Game Studios appears to render even fewer asteroids than Elite Dangerous or our 
implementation, but with significantly higher visual fidelity. The asteroids in Starfield have 
comparatively very detailed geometry and texture resolution. Starfield’s approach favors 
close-up visual detail and cinematic presentation, and likely makes use of numerous LOD 
transitions instead of encumbering itself with the overhead of rendering a large number of 
instances. 
 

 
Figure 16: Screenshot of an asteroid field in Elite Dangerous (left) and in Starfield (right). 
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CHAPTER 5 
 

CONCLUSION 

 

In this report, I presented the main project I worked on while at Cosmographic Software LLC. I  
applied GPU-based graphics optimization techniques within SpaceEngine, a real-time 
astronomical visualization software. The primary objective, rendering millions of asteroid 
instances efficiently at a stable performance of 60 frames per second on a mid-range hardware, 
was achieved through the implementation of GPU-based frustum culling, dynamic level of detail, 
and a special animated billboarding solution. 

The developed GPU-based frustum culling system utilizes Vulkan's compute shaders to 
significantly reduce unnecessary CPU processing by culling asteroid instances outside the 
camera's view, using the GPU’s parallel processing. The implementation of a dynamic LOD 
system further optimized rendering performance by adjusting mesh complexity based on camera 
distance. The billboarding approach I implemented, with a texture atlas to animate asteroids, 
effectively simulated the rotation of 3D asteroids without compromising visual realism. 
However, such texture-based asteroids would not cast shadows on the surface of the planet, 
which may affect realism. 

The results of this internship include not only substantial performance improvements for asteroid 
rendering but also laid the foundation for future applications within the engine, such as debris 
rendering on the surface of planets. Debris would use the same suite of techniques used for the 
asteroids, except a 2D atlas of textures to animate their billboards would not be needed, since 
debris are not supposed to be able to rotate arbitrarily in any direction. 

There are many areas to improve, some we mentioned in Chapter 4 on results. These include 
adding fading between LODs to make transitions less noticeable, and adding performance 
control options for the user such as LODs distance selection. Other future work would be 
extending the current billboarding system to also support billboard clouds [5]. It is a useful 
approach to render impostors using multiple billboards that support viewing an object from any 
angle without using a very large texture atlas of multiple rotation views. Another area to think 
about is how our billboards will work with Virtual Reality. Indeed, SpaceEngine supports Virtual 
Reality in OpenGL, while its Vulkan implementation is still a work in progress. Once it is 
implemented, it is important to test our project in Virtual Reality, to evaluate how billboard 
alignment works with two views (human eyes) and to validate if our tile selection functions to 
simulate asteroid rotation depending on camera position still work.   
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Another direction for future optimization would be to explore LOD systems for groups or 
hierarchies of asteroids, instead of treating each asteroid instance individually. Group-level 
culling and LODs could significantly reduce GPU workload when asteroids are distant or 
clustered. 

Outside of specifically asteroids, one thing that will improve realism for asteroid fields and 
asteroid rings around planets is the simulation of dust-like particles. In a real universe, after 
asteroids collide with each other, it would make sense to have much smaller rock particles 
floating around. This would most likely require a particle system to be implemented, as 
billboards would most likely not be suited for the task. An extension to this would be the use of 
participating media to simulate volumetric effects such as light shafts in dusty regions, which 
would probably make for good visuals. Lighting effects could also be improved by simulating 
the glow of light around asteroids, when facing a light source such as a star. Adding a glow 
effect, either through general post-processing or with a specialized asteroid fragment shader, 
could help simulate how real light would interact from stars to asteroid surfaces. 

Most of the SpaceEngine’s features such as stars, navigation physics, and other astronomical 
objects are written in OpenGL. We are still in the progress of implementing them in Vulkan. As 
more features get implemented in Vulkan, we will need to see how they interact with our asteroid 
field performance-wise, and adjust accordingly. One thing we know will be a problem are 
nebulas. They are implemented as volumetric clouds, so they take a lot of resources to run. 
Asteroid fields might not be able to render inside them, so we will need to either find a different 
way to display them inside nebula clouds or to simply disallow to render both at the same time. 

In the end, the work done in this internship has provided valuable hands-on experience in 
rendering programming and deepened my expertise in the Vulkan API. More specifically I 
learned a lot about compute shader programming, real-time pipeline synchronisation (between 
shaders and CPU-GPU communication), and graphics optimization techniques. All of this has 
given me a strong foundation for further learning in the domain of real-time Computer Graphics. 
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